skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Al_Sallal, Mohammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the challenges and a significant part of a protein structure’s prediction in three-dimensional space is a side chain prediction/packing. This area of research has a large importance, due to its various applications in protein design. In recent years, many methodologies and techniques have been crafted for side chain prediction such as DLPacker, FASPR, SCWRL4 and OPUS-Rota4. In this research, we address the problem from a different perspective. We employed a machine learning model to predict the side chain packing of protein molecules given only the Cα trace. We analyzed 32,000 protein molecules to extract important geometrical features that can distinguish between different orientations of side chain rotamers. We designed and implemented a Random Forest model to tackle this problem. Given the accuracy of existing state-of-the-art approaches, our model represents an improvement from among other models. The results of our experiment show that Random Forest is highly effective, achieving a total average accuracy of 73.7% for proteins and 73.3% for individual amino acids. 
    more » « less
    Free, publicly-accessible full text available January 12, 2026